FolderStructure.dev

LangChain Multi-Agent Project Structure

Multi-agent orchestration for complex workflows. Specialized agents with tools coordinated by supervisors.

#langchain #python #llm #ai #agents #multi-agent #tools
PNGPDF

Project Directory

myproject/
main.py
Orchestrator entry point
app/
Application code
__init__.py
config.py
Agent settings, API keys
agents/
Agent definitions
__init__.py
base.py
Base agent class
researcher.py
Web search agent
coder.py
Code generation agent
reviewer.py
Review/QA agent
tools/
Custom tools
__init__.py
search.py
Web search tool
code_executor.py
Sandboxed execution
file_tools.py
Read/write files
api_tools.py
External API calls
orchestration/
Agent coordination
__init__.py
supervisor.py
Task delegation
workflow.py
Agent graph/pipeline
state.py
Shared state management
prompts/
Agent prompts
__init__.py
agent_prompts.py
System prompts per agent
supervisor_prompt.py
memory/
Conversation and context
__init__.py
conversation.py
Chat history
shared_memory.py
Cross-agent context
workflows/
Predefined workflows
research_workflow.py
coding_workflow.py
tests/
__init__.py
test_agents.py
test_tools.py
requirements.txt
.env.example
.gitignore
README.md

Why This Structure?

Multi-agent systems split complex tasks across specialized agents. This structure separates agents, tools, and orchestration. A supervisor pattern coordinates agents, while shared memory enables cross-agent communication.

Key Directories

  • app/agents/-Specialized agents (researcher, coder, reviewer)
  • app/tools/-Tools agents can use (search, execute, file I/O)
  • app/orchestration/-Supervisor and workflow coordination
  • app/memory/-Shared state across agent conversations
  • workflows/-Predefined multi-agent pipelines

Getting Started

  1. python -m venv venv && source venv/bin/activate
  2. pip install -r requirements.txt
  3. cp .env.example .env (add API keys)
  4. python main.py (run orchestrator)

Multi-Agent Flow

  • Supervisor-Receives task, decides which agent handles it
  • Agent-Executes subtask using tools
  • Tool-Performs concrete action (search, code, etc.)
  • Memory-Stores results for other agents
  • Loop-Supervisor evaluates, may delegate more

When To Use This

  • Complex tasks requiring multiple capabilities
  • Autonomous research and coding workflows
  • Systems where agents need different specializations
  • Projects exploring LangGraph patterns
  • Building AI assistants with tool use

Trade-offs

  • Complexity-Multi-agent adds debugging and coordination overhead
  • Cost-Multiple agents = multiple LLM calls per task
  • Latency-Sequential agent handoffs add response time

Best Practices

  • Keep agent responsibilities narrow and focused
  • Use structured output for agent-to-agent communication
  • Implement proper error handling for tool failures
  • Consider LangGraph for complex state machines
  • Log agent decisions for debugging